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Società Italiana di Fisica
Springer-Verlag 1999

Recognition games

S.G.F. Martins, T.J.P. Penna, and P.M.C. de Oliveiraa

Instituto de F́ısica, Universidade Federal Fluminense, Av. Litorânea s/n, 24210-340 Niterói, RJ, Brazil
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Abstract. In this work we propose an evolution model based on the competition between individuals be-
longing to populations of neural networks, obeying the Hopfield dynamics. The selection rule adopted
relies on generalization and natural classification abilities. The results obtained through computer sim-
ulation show that these populations self-organize and evolve towards equilibrium states in the region of
transition between ordered and disordered phases.

PACS. 87.10+e General theory and mathematical aspects

1 Introduction

The study of complex adaptive systems has been an ob-
ject of great interest in several branches of science. Bi-
ological evolution, even in the most modest organism,
is certainly one of the most attractive examples of such
systems. Recently, models inspired in biological evolution
have received much attention in the physics research com-
munity [1].

Computer simulations of the behaviour of complex
adaptive systems have shown that these systems have a
tendency to accomodate themselves in a well defined tran-
sition zone between order and chaos, characterized by ef-
ficient adaptation and a power-law-governed behaviour.
This situation is sometimes called the “edge of chaos” after
Kauffman [2]. According to him, natural selection drives
the living systems to such poised states. Normally, to con-
firm if a system is really at this marginal situation between
order and chaos is a hard task. Suzuki and Kaneko [3] pro-
posed an evolutionary computational model, motivated by
the observed complexity of bird songs, which clearly shows
this behaviour. They simulated, through imitation games,
the competition between artificial birds, employing logistic
maps as generators of songs. Each “bird” is a logistic map
with a particular value of the control parameter, randomly
chosen at the beginning. By iterating one of these maps,
starting from some initial seed, a sequence of numbers is
generated: this sequence is considered as the “bird song”.
Two competitors try to imitate each other, i.e. each one
try to produce a sequence of numbers as near as possible
to some basic sequence given by the other. An offspring
of the winner, i.e. the one presenting a better imitation
ability, replaces the looser in the population. An offspring
is simply another logistic map for which the control pa-
rameter is slightly different from that of the parent. These
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imitation games are repeated many times, while the pop-
ulation evolves. The results confirm the evolution to the
“edge of chaos”, i.e. at the end all individuals within the
population correspond to control parameters near the iso-
lated critical values where the logistic map undergoes a
transition between regular and chaotic behaviours. These
values of the control parameter correspond to the ones
for which the Lyapunov exponent vanishes (the bifurca-
tion points, the onset of chaos and the borders of regular
windows inside the chaotic region).

In the course of biological evolution there are ran-
dom changes in the genotype of every generation. They
contribute to disturb the phenotype that help to decide
whether an organism is viable. A case of biological evolu-
tion of great importance to contemporaneous humanity is
the development of resistance to antibiotics in bacteria. A
careful investigation was carried on E. coli species [4,5].
It was found that resistance was achieved by a change in
the genotype. Through the genes, bacteria learn to recog-
nize and to answer to this menace, guaranteeing their sur-
vival. This learning occurs during biological evolution, be-
ing transmitted through genetic inheritance [2,5]. In other
words, complex living systems must “know” their environ-
ment. In this aspect, we propose an evolution model that
consists in a competition between individuals belonging
to populations of neural networks obeying Hopfield dy-
namics [6]. The adopted selection rule is based on gene-
ralization and natural classification. Natural classification
means that sufficiently similar things are classified as be-
ing the same [2,7]. The results show self-organization in
these populations, which evolve towards equilibrium states
in the region of transition between order and chaos.

2 The Hopfield model

An attractor neural network is a model of associa-
tive memory. The state of each neuron is represented
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by a binary variable (Sk = ± 1) [8]. Each neuron is con-
nected to other neurons through synapses. The synapse
intensities are represented by Jjk, the synaptic matrix el-
ements. The state of a given neuron Sk is determined
by the states of each other linked to it through the cor-
responding synapse intensity Jjk, which can lead to ex-
citation or inhibition of Sk. Hence, we can express the
dynamics of a neural network as [6]:

Sk(t+ 1) = sgn

∑
j

JjkSj(t)

 (1)

i.e., the neuron Sk will be active if the sum of the received
excitatory signals surpasses the inhibitory ones. This dy-
namics minimizes the following Hamiltonian:

H = −
1

2N

N∑
j=1

N∑
k 6=j

JjkSjSk, (2)

considering a network with N neurons.
Hopfield proposed that some information ξµj = ±1,

j = 1, ..., N , is considered as learned by the neural net-
work if it corresponds to a minimum of the Hamiltonian
(2) or an attractor fixed point of (1). In this way, the recog-
nition of a given information corresponds to a minimiza-
tion process implemented by iteratively applying equation
(1), one neuron after the other, until reaching convergence
of the whole system. Learning is a process in which the
neural network dynamically adjusts its synaptic matrix to
accomodate a certain pattern ξµ as a new attractor, i.e.,
as a minimum of (2) (in this paper, we will suppress the
lower index, which refers to a given neuron, when consid-
ering the complete set of neurons). Consider a network
with P stored patterns in its synaptic matrix. Accord-
ing to Hebb’s rule [9], a new information ξP+1 could be
learned by modifying the couplings Jjk according to:

∆Jjk =
1

N
ξP+1
j ξP+1

k , (3)

where ∆Jjk must be added to the current value of Jjk.
However, this single rule does not guarantee that ξµ

(µ = 1, 2, ..., P ) are fixed points of (1) (P was redefined).
In order to have this model operating as an associative
memory device, it is necessary that two further conditions
be fulfilled. First, the information must be uncorrelated,
i.e., the overlap between patterns, defined as

m(µ, ν) =
1

N

N∑
j=1

ξµj ξ
ν
j (4)

must be statistically null for all pairs µ,ν of informations.
Second, the number P of patterns stored in an N -neuron
network must be smaller than αcN , where αc is the critical
storage capacity in the Hopfield model (αc ∼ 0.14, for
uncorrelated patterns) [10]. Besides, if those patterns are
correlated (i.e., there is a large overlap) αc is even smaller.
It is worth mentioning that, even if the above conditions

are satisfied, rule (3) by itself does not guarantee that
ξµ are the only equilibrium states of (1). Actually, there
are other states that can be local minima of (2), which
correspond to spurious memories.

3 Population dynamics

We consider a population with V individuals, each one
being a Hopfield neural network with N neurons. In the
initial step each individual i is characterized by a series of
Pi patterns ξµ, µ = 1, ..., Pi randomly chosen. The num-
ber Pi of elements is also randomly chosen in the interval
[L,M ]. Each pattern is a word of N bits and the series of
Pi patterns of each individual i, which we call “genotype”,
is the series of informations genetically inherited by this
individual. Therefore, we take as a starting point a po-
pulation of individuals characterized by different “geno-
types”, contrarily to reference [2], where all individuals of
the species are identical, i.e., are represented by a single
genotype.

At each time step we choose randomly V pairs of in-
dividuals. For each pair we proceed as follows: the in-
dividual V1 presents all its “genotype” informations ξµ,
µ = 1, ..., P1 to another individual V2, also cho-
sen randomly. Presenting an information means making
it the input (stimulus) to the V2 neural network, i.e.,
Sj(t = 0) = ξµj , j = 1, ..., N , where Sj refers to the
j-th neuron of V2 and ξµ to the µ-th pattern memorized
by V1. This information will be processed by V2, following
the dynamics (1), until an equilibrium (stationary) state
is reached (we disregard the self-interaction terms in the
Hopfield dynamics and we utilize the multi-spin technique
[11,12]). The equilibrium state can be either some infor-
mation included in (3) for the individual V2 or a spurious
state. For each processed information, we check if the final
stationary state is similar to any information contained in
the “genotype” of V2. Two patterns are considered similar
if they differ by TX genes at most (TX is randomly cho-
sen within the interval 0.0 to 0.5N , for each new tossed
pair of individuals ). If the final stationary state is similar
to any information contained in the “genotype” of V2, we
calculate the overlap between the stimulus and the final
stationary state. Otherwise, we consider the overlap to be
null.

The same procedure is performed, considering now
that the individual V2 is the one that presents the in-
formation to V1. For each processing individual i, we cal-
culate the average overlap φi defined as:

φi =
1

Ns

Ns∑
s=1

m(i, s) (5)

whereNs is the number of the stimuli received by the indi-
vidual i and m(i, s) is the overlap (4) between the stimuli
and their respective final stationary states. The individual
with the smaller average overlap dies, and is replaced by a
descendent of the other. In our simulations we performed
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Fig. 1. Distribution of the number of patterns per individual for (a) N = 256 (b) N = 512 (c) N = 1024, in t = 1100 and (d)
N = 2048 in t = 500. We observe a process of self-organization. The distributions are symmetrical with regard to a value that
apparently tends to αc.
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Fig. 2. Time evolution of the average number of stored pat-
terns for each simulated population. (a) N = 256 (triangle),
N = 512 (star), N = 1024 (circle) until t = 1100 and N = 2048
(square) until t = 500. We verified that, after many time steps,
the average number of patterns fluctuates around an average
value. This average value tends to αcN (αc ∼ 0.14), as the
network dimension increases.

a “canonical” version of the population, i.e., we kept the
number of individuals constant. The rule described above
selects from a pair the individual with the best recognition
performance, and we call it a natural selection rule.

Let us describe now the birth step (asexual reproduc-
tion). The individual at birth will inherit all the parent’s
patterns, except one pattern, randomly chosen, which will
be replaced by another pattern, randomly generated at
birth. Moreover, there is a probability of 1/3 that one of
the following cases happen:

(a) the offspring stays with the same number Pi of
patterns as the parent;

(b) the offspring has one pattern less than the parent
(we erase another random one);

(c) the offspring has one (randomly generated) pattern
more than the parent (we include another one).

We call mutations these modifications in the inherited
“genotype” of the parent. Our model only allows genetic
evolution. No information can be learned during the in-
dividual’s life. The “genotype” is defined at birth and re-
mains unchanged during the individual’s lifetime. In this
sense, the present model is completely distinct from ref-
erence [13], where “cultural” aspects are treated. A time
step ends after the same procedure has been performed on
V randomly chosen pairs of individuals.
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Fig. 3. Time evolution of storage capacity of the network for
N = 1024 (circle) until t = 1100 and N = 2048 (square) until
t = 500. In the second case, the results only were tested until
t = 500, because the machine time is very large (2.5 months in
the Digital Workstation 400).

4 Simulations and results

In our simulations we consider populations of neural net-
works with dimensions N = 256, N = 512, N = 1024 and
N = 2048. All individuals of a population are represented
by neural networks of the same dimension N . We consider
a “mean-field” version of the population, i.e., each indi-
vidual can exchange information with all others. We sim-
ulate evolution between individuals of the same species.
Here we do not consider the coevolution case. The re-
sults were tested using several initial configurations and
different values for L (minimum number of informations
contained in the “genotype” of each individual), M (maxi-
mum number of informations contained in the “genotype”
of each individual) and V . The results that will be pre-
sented are those in that V , L and M take the following
values:

N = 256⇒ V = 40⇒ L =1⇒ M = 50

N = 512⇒ V = 40⇒ L =1⇒ M = 100

N = 1024⇒ V = 40⇒ L =1⇒ M = 200

N = 2048⇒ V = 40⇒ L =1⇒ M = 400.
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Fig. 4. Time evolution of the average fitness of simulated populations. (a) N = 256 (solid line), N = 512 (dotted line), N = 1024
(dashed line) until t = 1100 and N = 2048 (long dashed) until t = 500. We verified that, after many time steps, the average
fitness fluctuates around an optimum value. (b) These optimum values, estimated by averaging over t > 250, increase with the
network dimension. The inset shows how the fitness approaches the maximum conceivable value 1, suggesting a power law with
exponent ∼ 0.6.

In all simulations the parameter TX was randomly chosen
within the interval 0.0 to 0.5N , for each tossed pair of
individuals.

In Figure 1 we show the distributions of the number
of patterns per individual after some time steps. The av-
erage numbers of individuals in each class were calculated
over the last τ = 10 time steps. We observe that the dis-
tribution, previously uniform, after some time exhibits an
organization.

In Figure 2 we show the time evolution of the average
number of stored patterns per individual, for each simu-
lated population. These average numbers were calculated
at each τ = 10 time steps and are defined as:

〈P (τt)〉 =
1

τ

τ(t+1)∑
t′=τt+1

℘(t′) (6)

where t ≥ 0 and ℘(t′) is the average number of patterns of
the population at time step t′. We observe that after some
time the average number of patterns fluctuates around an
average value (Pm). Considering the definition α = P

N
,

we obtained for each simulated population the following

results:

N = 256⇒ Pm = 47⇒ α = 0.18

N = 512⇒ Pm = 78⇒ α = 0.15

N = 1024⇒ Pm = 146⇒ α = 0.14

N = 2048⇒ Pm = 269⇒ α = 0.13.

As the network dimension increases, we verify that the val-
ues Pm around which the populations self organize, tend
to the transition value. This is so because the average val-
ues of α tend to αc ∼ 0.14, the critical storage capacity in
the Hopfield model. In Figure 3 one can see that a com-
plete saturation was not yet reached for N = 2048 and
t = 500. This explains why the value α = 0.13 is still
smaller than αc.

Evolution is a process of fitness optimization. The fit-
ness is not a property of a genotype alone, but depends
upon its environment. With the inclusion of population
dynamics, the fitness of each individual depend on the
population at that moment. Therefore, in this work, the
fitness landscape is not given in advance, in contrast with
many theoretical models [2]. According to reference [3],
the fitness landscape emerges naturally through evolu-
tion. In this work the average fitness of a population is
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Fig. 5. (a) Number of individuals sharing the same pattern in the final step of the simulation (t = 1100) by N = 512. (b) The
same as in (a), now with a new ordering: the patterns are ranked according to decreasing numbers of individuals sharing the
same pattern. In this curve the first points where saturation occurs were not plotted. The distribution suggests a power law.

calculated at each τ = 10 time steps and is defined as

〈Φ(τt)〉 =
1

τ

τ(t+1)∑
t′=τt+1

φ(t′) (7)

where t ≥ 0 and φ(t′) is the average overlap (5) of popula-
tion at time step t′ (taken after all V pairs of individuals
were processed).

In Figure 4a we show the time evolution of the average
fitness, 〈Φ(t)〉, of different populations of neural networks.
We verified that after some time steps the average fitness
fluctuates around the optimum value. In Figure 4b we
show the average of the values 〈Φ(t)〉, over t > 250, as a
function of the network dimension. We verified that these
averages increases with the network dimension.

In Figure 5a we show the distributions of the number
of individuals sharing the same pattern as a function of
these patterns after several time steps. We observe that a
population is composed of distinct individuals with a few
common patterns. In contrast, at the beginning (t = 0),
each pattern was present in only one individual. In Fig-
ure 5b we show the frequency of individuals with a given
pattern versus their ranking. The regularity expressed by
straight lines in the logarithmic plot of rank versus fre-
quency suggest a “Zipf law” [14] with exponent bigger
than one.

We also verified that starting from populations of in-
dividuals with different genotypes, all individuals of the
self-organized populations have the same ancestor, i.e.,
all are originated from the same “Eve” (this result was
tested also for populations with V > 40). This is in ac-
cordance with the result obtained in references [15,16] for
other completely distinct systems, and with the “coales-
cence theory” [17].

5 Conclusions

Motivated by the work in reference [3], where the pro-
posed model for the evolution considers the competition
between individuals which are simple logistic maps, we
propose an evolution model where the individuals of the
population are themselves complex systems. With a sim-
ple evolution model, we find that the populations adapt
under the patronage of natural selection at the transition
region between ordered (presence of recognition) and dis-
ordered (absence of recognition) phases. In this region the
average number of stored patterns by the populations fluc-
tuates around αcN and the average fitness of populations
attain optimum values. Therefore the adopted selection
rule drives and supports the equilibrium states in the re-
gion of transition between order and chaos.
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